

CA ad hoc Forest Biomass Working Group – eNewsletter 34/2024

ARB: Proposed Low Carbon Fuel Standard Amendments. ARB (the State of California Air Resources Board) is proposing [amendments to the Low Carbon Fuel Standard \(LCFS\)](#) and has developed the [proposed modifications \(15-Day Changes\)](#). Amendments of particular concern as they relate to woody feedstock to support forest biomass facilities that may be eligible for LCFS credits include, but are not limited to (1) Lack of clear Definitions for "Non-Industrial" vs. "Industrial" Forestlands, (2) Definition of "Forest Biomass Waste", (3) Requirements for Agricultural and Forest Biomass, (4) Eligibility of Methods for Carbon Capture and Sequestration (5) Narrowing of Feedstock Availability, and (6) Exclusion of Timberlands from Wildfire Risk Reduction Efforts. The deadline for [Public Comment is August 27, 2024](#).

Forest Biomass Plant in Dobbins headed for Construction with Financing from Yuba Water Agency. Construction of a 5MW forest biomass plant near Dobbins in Yuba County can now move forward with the help of a [\\$7 million grant and \\$8.3 million low-interest loan to the Camptonville Community Partnership](#) recently approved by the Yuba Water Agency. The facility will process woody material from forest restoration projects in the Yuba River watershed, increasing the pace and scale of work to improve forest health and reduce the risk of catastrophic wildfire. Currently, projects within Yuba County and the greater North Yuba River watershed require contractors to truck removed woody material from the forest to existing biomass plants that are several hours away or secure permits to burn the material on site. Having a biomass plant in Dobbins will not only reduce the cost of implementation for regional projects but will also bolster the local community with new jobs and business opportunities.

Estimating the Return on Investment from Restoration and Fuel Treatments in US Western frequent-Fire Forests. Forest restoration and fuel treatments, including thinning and prescribed burning, have become the primary approaches for reducing the abundance of overly dense stands and reestablishing natural fire regimes. Although there is a strong body of biophysical science supporting these approaches, little is known about their cost effectiveness. To evaluate forest restoration and fuel treatment benefits and costs, a team of researchers at the [Ecological Restoration Institute](#) and the [Conservation Economics Institute](#) conducted a [meta-analysis](#) of benefit-cost ratios for restoration benefit types documented in the literature for western US dry mixed-conifer forests at risk of uncharacteristic wildfires. A total of 120 observations were collated from 16 studies conducted over the last two decades, with benefits ranging from enhanced ecosystem services to extensively avoided wildfire costs. Significant variation in the value of restoration and fuel treatment benefit types was found, indicating that restoration benefits differ in value based on societal importance. Overall, 17 individual benefit types were aggregated to show that in the most valuable and at-risk watersheds, every dollar invested in forest restoration can provide up to seven dollars of return in the form of benefits and provide a return-on-investment of 600%. This [factsheet](#) summarizes the findings.

Return To Log: What Wood Products Manufacturing Process generates the highest RTL Values? Return To Log, or RTL, is an analytical tool for assessing how much economic value a manufacturing process returns to the wood fiber used as raw material. The RTL process involves tracking the total sales value of the products generated from a given volume of wood fiber and then subtracting the cost of manufacturing those products. If the difference in the sales value and the manufacturing cost is positive, the amount of that difference is the "break-even" value of the wood fiber delivered to the manufacturing facility, or the "return" to the raw material. Many forest products businesses use [RTL analysis](#) as a tool to identify which diameter, length, quality, or species of log offers the best value in

their operations. It might sound simple, but it's a little deeper than one might think—especially when the intent of the RTL analysis is not to identify the “best log” for a certain mill, but rather to compare RTL values across different forest products manufacturing processes to see which process produces the highest RTL value.

Sonoma County Biomass Business Competition, Technical Assistance Guide. In June 2020, the [Northern Sonoma County Air Pollution Control District](#) launched the Sonoma County Biomass Business Competition ([BioBiz](#)). The first of its kind in the region, the purpose of BioBiz was to create and implement an actionable model for the utilization of local excess forest biomass via small business innovation. Over 17 months of local and state stakeholder collaboration, material development, and community outreach, the BioBiz model was designed and then launched. At its conclusion, the BioBiz model demonstrated success and was able to raise funds that supported the launch/expansion of two local small business startups to utilize biomass. The success of the model to incubate new small business partners to address supply chain capacity for vegetation management within high wildfire risk areas can be replicated and scaled across California and the greater American West. The BioBiz project team has created this [Technical Assistance Guide](#) for other parties to quickly develop and implement their own biomass business competitions in other regions.